Analysis of Heart Transplant Survival Data Using Generalized Additive Models
نویسندگان
چکیده
The Stanford Heart Transplant data were collected to model survival in patients using penalized smoothing splines for covariates whose values change over the course of the study. The basic idea of the present study is to use a logistic regression model and a generalized additive model with B-splines to estimate the survival function. We model survival time as a function of patient covariates and transplant status and compare the results obtained using smoothing spline, partial logistic, Cox's proportional hazards, and piecewise exponential models.
منابع مشابه
Comparison of Artificial Neural Networks and Cox Regression Models in Prediction of Kidney Transplant Survival
Cox regression model serves as a statistical method for analyzing the survival data, which requires some options such as hazard proportionality. In recent decades, artificial neural network model has been increasingly applied to predict survival data. This research was conducted to compare Cox regression and artificial neural network models in prediction of kidney transplant survival. The prese...
متن کاملComparison of Artificial Neural Networks and Cox Regression Models in Prediction of Kidney Transplant Survival
Cox regression model serves as a statistical method for analyzing the survival data, which requires some options such as hazard proportionality. In recent decades, artificial neural network model has been increasingly applied to predict survival data. This research was conducted to compare Cox regression and artificial neural network models in prediction of kidney transplant survival. The prese...
متن کاملRituximab Is Indispensable for Pediatric Heart Transplant Recipients Developing Post transplant Lymphoproliferative Disorders
Abstract Rituximab, an anti-CD20 agent, has been suggested as an effective strategy to deal with post transplant lymphoproliferative disorders (PTLD). In the current study, we aim to evaluate the efficacy of rituximab therapy in heart transplant population developing PTLD. A comprehensive search of the literature was performed to gather the available data on lymphoproliferative disorders oc...
متن کاملCox and Frailty Models for Analysis of Esophageal Cancer Data
By existing censor and skewness in survival data, some models such as weibull are used to analyzing survival data. In addition, parametric and semiparametric models can be obtained from baseline hazard function of Cox model to fit to survival data. However these models are popular because of their simple usage but do not consider unknown risk factors, that's why cannot introduce the be...
متن کاملSurvival Data Analysis with Time-Dependent Covariates Using Generalized Additive Models
We discuss a flexible method for modeling survival data using penalized smoothing splines when the values of covariates change for the duration of the study. The Cox proportional hazards model has been widely used for the analysis of treatment and prognostic effects with censored survival data. However, a number of theoretical problems with respect to the baseline survival function remain unsol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013